Sabtu, 02 Agustus 2008

PENGEREMAN DINAMIK PADA MOTOR INDUKSI TIGA FASA

PENGEREMAN DINAMIK PADA MOTOR INDUKSI TIGA FASA

Agung Warsito, Mochammad Facta, M Anantha B P
a.warsito@elektro.ft.undip.ac.id, facta@elektro.ft.undip.ac.id
Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro

Abstrak
Motor induksi tiga fasa banyak digunakan
oleh dunia industri karena memiliki beberapa
keuntungan antara lain motor ini sederhana, murah
dan mudah pemeliharaannya. Pada penggunaan
motor induksi sering dibutuhkan proses
menghentikan putaran motor dengan cepat,
terutama aplikasi untuk konveyor. Untuk
menghentikan putaran rotor, torsi pengereman
diperlukan yang dapat dihasilkan secara mekanik
maupun secara elektrik.
Pengereman untuk menghentikan putaran
motor induksi dapat dirancang secara dinamik,
yaitu sistem pengereman yang dilakukan dengan
membuat medan magnetik motor stasioner.
Keadaan tersebut dilaksanakan dengan
menginjeksikan arus DC pada kumparan stator
motor induksi tiga fasa setelah hubungan kumparan
stator dilepaskan dari sumber tegangan suplai AC.
Metode pengereman dinamik memiliki
keuntungan antara lain kemudahan
pengaturan kecepatan pengereman
terhadap motor induksi tiga fasa dan
kerugian mekanis dapat dikurangi.
Dengan mengaplikasikan pengereman
dinamik pada motor induksi tiga fasa
didapatkan hasil proses menghentikan
putaran motor induksi lebih cepat
dibandingkan tanpa pengereman
dinamik

I. PENDAHULUAN

Motor induksi tiga fasa banyak digunakan oleh dunia industri karena memiliki beberapa
keuntungan. Keuntungan yang dapat diperoleh dalam pengendalian motor–motor induksi tiga fasa yaitu, struktur motor induksi tiga fasa lebih ringan (20% hingga 40%) dibandingkan motor arus searah (DC) untuk daya yang sama, harga satuan relatif lebih murah, dan perawatan motor induksi tiga fasa lebih hemat.
Pengereman pada motor induksi tiga fasa, secara umum masih menggunakan metoda yang
sederhana, dengan cara pengereman mekanik dimana torsi pengereman dihasilkan oleh peralatan pengereman yang berupa sepatu rem dan drum yang terpasang pada poros rotor. Pada pengereman ini energi putar dari rotor dikurangi dengan cara menekan poros rotor menggunakan sepatu rem. Pengereman secara mekanik membutuhkan jadwal pemeliharaan
teratur karena terdapat rugi – rugi mekanis seperti gesekan yang menimbulkan panas dan menghasilkan debu akibat gesekan. Pengereman untuk menghentikan putaran motor induksi dapat dirancang secara dinamik, yaitu menggunakan sistem pengereman yang dilakukan dengan membuat medan magnetik motor stasioner.
Keadaan tersebut dilaksanakan dengan menginjeksikan arus DC pada kumparan stator motor induksi tiga fasa setelah hubungan kumparan stator dilepaskan dari sumber tegangan suplai AC. Metode pengereman dinamik (dynamic braking) memiliki keuntungan antara lain kemudahan pengaturan kecepatan pengereman terhadap motor induksi tiga fasa.

II. DASAR TEORI

2.1 Motor Induksi [1,3]

Pada motor induksi arus rotor bukan diperoleh dari sumber tertentu, tetapi merupakan arus yang terinduksi sebagai akibat perbedaan relatif antara putaran rotor dengan medan putar yang dihasilkan oleh stator.

2.2 Konstruksi Motor Induksi Tiga Fasa[1,3]

Motor induksi tiga fasa memiliki dua komponen dasar yaitu stator dan rotor, bagian rotor dipisahkan dengan bagian stator oleh celah udara yang sempit (air gap) dengan jarak antara 0,4 mm sampai 4 mm. Tipe dari motor induksi tiga fasa berdasarkan lilitan pada rotor dibagi menjadi dua macam yaitu rotor belitan (wound rotor) adalah tipe motor induksi yang memiliki rotor terbuat dari lilitan yang sama dengan lilitan statornya dan rotor sangkar tupai (Squirrel-cage rotor) yaitu tipe motor induksi dimana konstruksi rotor tersusun oleh beberapa batangan logam yang dimasukkan melewati slot-slot yang ada pada rotor motor induksi, kemudian setiap bagian disatukan oleh cincin sehingga membuat batangan logam terhubung
singkat dengan batangan logam yang lain.

2.3 Beban Motor Induksi Tiga Fasa

Dalam melaksanakan pengujian pengereman dinamik digunakan dinamometer DC (generator-motor 1 Transmisi, Vol. 11, No. 1, Juni 2006 : 1 - 5 arus searah) sebagai beban motor induksi.
Dinamometer DC dalam percobaan berfungsi untuk mengubah energi mekanik menjadi energi
listrik.

2.4 Pengereman pada Motor listrik[6,8,10,14]

Pengereman secara elektrik, torsi pengereman dihasilkan berdasarkan nilai arus injeksi yang diberikan pada belitan stator.
Pada pengereman secara elektrik energi putaran rotor diubah menjadi energi elektrik yang
kemudian dikembalikan ke suplai daya, atau dengan memberikan suatu medan magnet stasioner
pada stator sehingga putaran rotor akan berkurang dengan sendirinya, pengereman secara elektrik lebih halus dan tidak ada hentakan yang terjadi.
Pengereman secara elektrik tidak dapat menghasilkan torsi untuk menahan beban dalam
keadaan sudah berhenti dan membutuhkan sumber energi listrik untuk mengoperasikannya.

2.5 Pengereman Dinamik

Pengereman dinamik digunakan untuk menghentikan putaran rotor motor induksi.
Tegangan pada stator diubah dari sumber tegangan AC menjadi tegangan DC dalam waktu yang
sangat singkat. Torsi yang dihasilkan dari pengereman tergantung pada besar arus DC yang
diinjeksikan pada belitan stator. Pada gambar 2.1. menunjukkan bentuk rangkaian pengereman
dengan injeksi arus searah pada motor induksi tiga fasa.
Trafo
Step Down
Stator
Motor
K1
M
3~
K2
Penyearah
Gambar 2.1 Pengereman dinamis dengan injeksi arus searah pada motor induksi tiga fasa.

Arus searah yang diinjeksikan pada kumparan stator akan mengembangkan medan stasioner untuk menurunkan tegangan pada rotor.
Oleh karena kumparan rotor terhubung singkat, arus yang mengalir menghasilkan medan magnet.
Medan magnet akan berputar dengan kecepatan yang sama dengan rotor tetapi dengan arah yang berlawanan untuk menjadikan stasioner terhadap stator.
Interaksi medan resultan dan gerak gaya magnet rotor akan mengembangkan torsi yang berlawanan dengan torsi motor sehingga pengereman terjadi. Torsi pengereman yang dihasilkan tergantung pada besarnya arus injeksi DC pada belitan stator, karena torsi pengereman sebanding dengan arus injeksi. Sedangkan nilai tahanan (R) berpengaruh pada nilai kecepatan torsi pengereman terjadi. Semakin kecil nilai tahanan (R), semakin cepat torsi pengereman terjadi.

2.6 Penyearah Penuh Satu Fasa

Penyearah yang dipakai pada alat ini adalah penyearah gelombang penuh dengan menggunakan
transformator step down dan mempunyai keluaran tegangan DC positif. Rangkaian penyearah gelombang penuh dengan menggunakan transformator step down dapat dilihat pada gambar 2.2.
Pada saat setengah siklus positif dioda D2 dan D3 akan konduksi untuk menghasilkan satu siklus positif dan pada siklus negatip dioda D4 dan D1 akan konduksi untuk menghasilkan satu siklus negatif.
V A C
D 3
D 1 D 2
D 4
2 2 0 v
0 v
+
N 1 N 2
+
V D C
Gambar 2.2 Penyearah gelombang penuh

III. PENGUJIAN

Blok diagram pengujian seperti tampak pada gambar dibawah ini.
SUPLAI AC
TIGA FASA
PANEL KONTROL MOTOR INDUKSI
TIGA PHASA
GENERATOR DC BEBAN
S U P L A I A C
S A T U F A S A
T R A F O S T E P D O W N P E N Y E A R A H
P E N U H S A T U F A S A
Gambar 3.1 Diagram blok

3.1.Pengujian Lama Waktu Berhenti Motor Induksi Tiga Fasa tanpa Pengereman Dinamik

Pengujian ini dilakukan untuk mengetahui lama waktu berhenti motor induksi tiga fasa tanpa pengereman dinamik. Hasil pengujian ini untuk mengetahui selisih lama waktu berhenti dengan dan tanpa pengereman dinamik. Gambar rangkaian penghentian motor induksi tiga fasa tanpa
pengereman dinamik diperlihatkan pada gambar 3.2.
M
M C B 3 F a s a M C B 1 F a s a
K o n t a k U t a m a N O
K o n t a k t o r 1 K o n t a k N C T i m e r 1
P u s h B u t t o n N C 1
P B N T O L R O 1
K o n t a k B a n t u N O
K o n t a k t o r 1
K o n t a k B a n t u N O
K o n t a k t o r 2
K o n t a k B a n t u N C
K o n t a k t o r 2
K o n t a k B a n t u N C
K o n t a k t o r 1
K o n t a k t o r 1 P i l o t L a m p K 2 T 1 R 1
M o t o r I n d u k s i
T i g a F a s a
Gambar 3.2 Rangkaian penghentian motor induksi tiga fasa tanpa pengereman dinamik

3.2.Perhitungan Besar Arus Injeksi DC untuk Pengereman Dinamik pada Motor Induksi Tiga Fasa

Sebelum melaksanakan pengujian pengereman dinamik terlebih dahulu melakukan perhitungan besar arus injeksi sesuai rumus pada masing-masing konfigurasi dibawah ini.
IDC
IDC
IDC
IDC IDC
IDC
(a)
STATOR
1/3
1/3
2/3
STATOR
STATOR
(b) (c)
1/2
1/2
STATOR
STATOR
STATOR
(d) (e) (f)
Gambar 3.3 Konfigurasi hubungan belitan stator untuk pengereman dinamik

Pada rangkaian pengereman dinamik untuk keenam konfigurasi rumus arus injeksi Idc
ditabulasikan pada tabel 3.1.
Tabel 3.1 Rumus arus injeksi DC pada keenam konfigurasi hubungan belitan stator untuk pengereman dinamis
N
o.
Uraian Rumus
1 Konfigurasi A Idc Iac
2
3 =
2 Konfigurasi B Idc = 2Iac
3 Konfigurasi C Idc Iac
2
3 =
4 Konfigurasi D Idc Iac
3
2 =
5 Konfigurasi E
2 2
3Iac
Idc =
6 Konfigurasi F
2 2
3Iac
Idc =

3.3.Pengujian Lama Waktu Berhenti Motor Induksi Tiga Fasa dengan Pengereman Dinamik

Pengujian ini dilakukan untuk mengetahui lama waktu berhenti motor induksi tiga fasa dengan
pengereman dinamik. Hasil percobaan ini untuk mengetahui selisih lama waktu berhenti dengan dan tanpa pengereman dinamik. Gambar rangkaian penghentian motor induksi tiga fasa dengan pengereman dinamik untuk keenam konfigurasi hubungan belitan stator diperlihatkan pada gambar 3.3.
M
M C B S a t u F a s a
K o n t a k N C T i m e r 1
K o n t a k N O K o n t a k t o r 2
K o n t a k N O K o n t a k t o r 1
P u s h B u t t o n 1 N C
P u s h B u t t o n 1 N 0
K o n t a k N C K o n t a k t o r 1 K o n t a k N C K o n t a k t o r 2
K 1 P i l o t L a m p K 2 T 1 R 1
T r a f o S t e p D o w n
P e n y e a r a h
M C B T i g a F a s a
T O L R
M o t o r I n d u k s i
T i g a F a s a
K o n t a k U t a m a N 0
K o n t a k t o r 1
Gambar 3.4 Rangkaian penghentian motor induksi tiga fasa dengan pengereman dinamik pada salah satu konfigurasi

IV. HASIL PENGUJIAN.

4.1 Lama Waktu Berhenti Motor Induksi Tiga Fasa tanpa Pengereman Dinamik pada Variasi Tegangan 110, 220, 380 Volt Beban Lampu 75 dan 150 Watt

Pada pengujian untuk mengetahui waktu berhenti motor induksi tiga fasa tanpa pengereman dinamik untuk variasi tegangan 110, 220, 380 Volt beban lampu 75 dan 150 Watt pada keenam variasi hubungan belitan stator hasilnya digambarkan dalam grafik sebagai berikut :
3
Transmisi, Vol. 11, No. 1, Juni 2006 : 1 - 5
5,4 5,55 5,6
0,38 0,57
1,31
0
1
2
3
4
5
6
110 220 380
Tegangan Belitan Stator
Besar Waktu Berhenti dan Arus
Waktu Berhenti (Detik) Arus (Ampere)
Gambar 4.1 Grafik hubungan waktu berhenti dengan arus pada variasi hubungan belitan stator hubung bintang beban lampu 75 Watt
4.04 4.3 4.38
1.32
0.48 0.59
0
1
2
3
4
5
110 220 380
Tegangan Belitan Stator
Besar Waktu Berhenti dan Arus
Waktu Berhenti (Detik) Arus (Ampere)
Gambar 4.2 Grafik hubungan waktu berhenti dengan aruspada variasi hubungan belitan stator hubung bintang beban lampu 150 Watt

Berdasarkan grafik 4.1 dan 4.2 dapat dianalisa berdasarkan hasil pengujian untuk belitan stator hubung bintang bahwa waktu ratarata berhenti untuk beban lampu 150 Watt lebih cepat dibanding beban lampu 75 Watt. Namun waktu berhenti rata-rata beban lampu 75 Watt dan
150 Watt cenderung semakin lama jika tegangan cenderung naik.
5.6 5.66
0.87
2.29
0
1
2
3
4
5
6
110 220 Tegangan Belitan Stator
Besar Waktu Berhenti dan Arus
Waktu Berhenti (Detik) Arus (Ampere)
Gambar 4.3 Grafik hubungan waktu berhenti dengan arus pada variasi hubungan belitan stator hubung segitiga beban lampu 75 Watt
4.25 4.27
0.91
2.33
0
1
2
3
4
5
110 220 Tegangan Belitan Stator
Besar Waktu Berhenti dan Arus
Waktu Berhenti (Detik) Arus (Ampere)
Gambar 4.4 Grafik hubungan waktu berhenti dengan arus pada variasi hubungan belitan stator hubung segitiga beban lampu 150 Watt
B
erdasarkan grafik 4.3 dan 4.4 dapat dianalisa berdasarkan hasil percobaan untuk belitan stator hubung bintang bahwa waktu rata-rata berhenti untuk beban lampu 150 Watt lebih cepat dibanding beban lampu 75 Watt. Namun waktu berhenti rata-rata beban lampu 75 Watt dan 150 Watt cenderung semakin lama jika tegangan cenderung naik.
Berdasarkan grafik 4.1, 4.2, 4.3 dan 4.4 dapat dianalisa berdasarkan hasil percobaan untuk belitan stator hubung bintang dan segitiga bahwa waktu rata-rata berhenti cenderung sama pada masing-masing variasi tegangan karena tanpa pengereman dinamik.

4.2 Lama Waktu Berhenti Motor Induksi Tiga Fasa dengan Pengereman Dinamik pada Variasi Tegangan 110, 220, 380 Volt Beban Lampu 75 dan 150 Watt

Pada pengujian untuk mengetahui waktu berhenti motor induksi tiga fasa dengan pengereman dinamik untuk variasi tegangan 110, 220, 380 Volt beban lampu 75 dan 150 Watt pada keenam variasi hubungan belitan stator hasilnya digambarkan dalam grafik sebagai berikut :
4.07
3.15
1.26
0.47 0.71
1.6
0
1
2
3
4
5
110 220 380
Tegangan Belitan Stator
Besar Waktu Berhenti dan Arus
Waktu Berhenti (Detik) Arus (Ampere)
Gambar 4.5 Grafik hubungan waktu berhenti dengan arus pada variasi hubungan belitan stator hubung bintang beban lampu 75 Watt

2.89
0.96
2.15
0.6 0.72
1.61
0
0.5
1
1.5
2
2.5
3
3.5
110 220 380
Tegangan Belitan Stator
Besar Waktu Berhenti dan Arus
Waktu Berhenti (Detik) Arus (Ampere)
Gambar 4.6 Grafik hubungan waktu berhenti dengan arus pada variasi hubungan belitan stator hubung bintang beban lampu 150 Watt

Berdasarkan grafik 4.5 dan 4.6 dapat dianalisa berdasarkan hasil pengujian untuk belitan stator hubung bintang bahwa waktu rata-rata berhenti untuk beban lampu 150 Watt lebih cepat dibanding beban lampu 75 Watt walau arus injeksi DC relatif sama.
2.84
1.01.27 2
2.54
0
0.5
1
1.5
2
2.5
3
110 220 Tegangan Belitan Stator
Besar Waktu Berhenti dan Arus
Waktu Berhenti (Detik) Arus (Ampere)
Gambar 4.7 Grafik hubungan waktu berhenti dengan aruspada variasi hubungan belitan stator hubung segitiga beban lampu 75 Watt
2.33
0.95
1.31
2.58
0
0.5
1
1.5
2
2.5
3
110 220 Tegangan Belitan Stator
Besar Waktu Berhenti dan Arus
Waktu Berhenti (Detik) Arus (Ampere)
Gambar 4.8 Grafik hubungan waktu berhenti dengan arus pada variasi hubungan belitan stator hubung segitiga beban lampu 150 Watt

Berdasarkan grafik 4.7 dan 4.8 dapat dianalisa berdasarkan hasil pengujian untuk belitan stator hubung bintang bahwa waktu rata-rata berhenti untuk beban lampu 150 Watt lebih cepat dibanding beban lampu 75 Watt walau arus injeksi DC relatif sama.
Berdasarkan grafik 4.5, 4.6, 4.7 dan 4.8 dapat dianalisa berdasarkan hasil percobaan untuk
belitan stator hubung bintang dan segitiga bahwa waktu rata-rata berhenti cenderung semakin kecil ketika tegangan dan arus injeksi DC semakin besar.

IV. KESIMPULAN

Dari hasil pengujian dapat ditarik kesimpulan sebagai berikut :
1. Waktu berhenti motor induksi tanpa pengereman dinamik semakin lama jika tegangan belitan stator bertambah besar dan waktu berhenti berkurang jika beban lampu bertambah besar.
2. Waktu berhenti motor induksi belitan stator hubung bintang konfigurasi A, B dan E dengan pengereman dinamik berkurang jika arus injeksi dc, tegangan belitan stator dan beban lampu bertambah besar .
3. Waktu berhenti motor induksi belitan stator hubung segitiga konfigurasi C, D dan F dengan pengereman dinamik berkurang jika arus injeksi dc, tegangan belitan stator dan beban lampu bertambah besar.
4. Waktu berhenti motor induksi dengan pengereman dinamik berkurang dibandingkan tanpa pengereman dinamik.
5. Pengereman dinamik konfigurasi A, B, E untuk belitan stator hubung bintang cenderung mempunyai karakteristik yang sama
6. Pengereman dinamik konfigurasi F untuk belitan stator hubung segitiga cenderung mempunyai karakteristik yang lebih baik dibanding konfigurasi C, D karena arus injeksi DC tidak terlalu besar tetapi mempunyai waktu berhenti yang kecil.


"Tjetjep"

Sumber : http://boomx.wordpress.com/category/modul-artikel/

DAFTAR PUSTAKA
[1] Eugene C. Lister, Ir. Drs. Hanapi Gunawan, Mesin
Dan Rangkaian Listrik, Penerbit Erlangga, Jakarta, 1993.
[2] Fizgerald, Kingsley, Umans, Mesin - Mesin Listrik,
Penerbit Erlangga, Jakarta, 1997.
[3] Harten, P. Van, Instalasi Listrik Arus Kuat 3,
CV. Trimitra Mandiri, Jakarta, 1978.
[4] I J Nagrath, D P kothari, Electric Machines, Tata
McGraw-Hill Publishing Co. Ltd., New Delhi, 1985.
[5] Kadir A, Mesin Tak Serempak, Djambatan,
Jakarta,1981.
[6] M. Chilikin, Electric Drive, MIR Publisher, Moscow,
1970.
[7] M. Rashid, Power Electronics Circuit, Device, and
Aplication 2nd, Prentice-Hall International Inc, 1988.
[8] M. V. Deshpande, Electric Motors: Applications And
Control, A. H. Wheeler & Co.Ltd, India, 1990.
[9] ---, Peraturan Umum Instalasi Listrik 2000.
[10] P. C. Sen, Principles Of Electric Machines And
Power Electronics, Second Edition, John Wiley & Sons,
USA, 1997.
[11] Sumanto, MA, Motor Listrik Arus Bolak-Balik, Endi
Offset, Yogyakarta, 1993.
[12] Team, Instalasi Listrik, TEDC, Bandung.
[13] Theodore Wildi, Electrical Machines, Drives and
Power Systems 3rd,Prentice Hall Inc, New Jersey, 1997.
5
Transmisi, Vol. 11, No. 1, Juni 2006 : 1 - 5
[14] Vedam Subrahmanyam, Electric Drives,
Concepts and Applications, Tata McGraw-Hill,
New Delhi, 1994.
[15] Zuhal, Dasar Tenaga Listrik Dan Elektronika
Daya, Gramedia, Jakarta, 1995.

1 komentar:

marines mengatakan...

dri mn rumus konfigurasi stator ddpat??